See alsoe Approximations, e Continued Fraction, e
Digits, Carleman's Inequality, Compound
Interest, de Moivre's Identity, Euler
Formula, Exponential Decay, Exponential
Function, Exponential Growth, Hermite-Lindemann
Theorem, Natural Logarithm, Pickover's
Sequence, Steiner's Problem Explore this topic in the MathWorld classroom
Related Wolfram sites
Portions of this entry contributed by Jonathan Sondow (author's
link)
Explore with Wolfram|Alpha

More things to try:
ReferencesBailey, D. H. "Numerical Results on the Transcendence of Constants Involving

,
e, and Euler's Constant." Math. Comput.
50, 275-281, 1988.Barel,
Z. "A Mnemonic for e." Math. Mag.
68, 253, 1995.Baruvelle,
H. V. "The Number e: The Base of Natural Logarithms." Math.
Teacher
38, 350-355, 1945.Borwein, J. and Bailey, D. Mathematics
by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A
K Peters, 2003.Borwein, J. M.; Borwein, P. B.; and Bailey,
D. H. "Ramanujan, Modular Equations, and Approximations to Pi or How to
Compute One Billion Digits of Pi." Amer. Math. Monthly
96, 201-219,
1989.Brothers, H. J. "Improving the Convergence of Newton's
Series Approximation for

."
College Math. J.
35, 34-39, 2004.Brothers, H. J.
and Knox, J. A. "New Closed-Form Approximations to the Logarithmic Constant
e." Math. Intell.
20, 25-29, 1998.Caldwell,
C. K. and Dubner, H. "Primes in Pi." J. Recr. Math.
29,
282-289, 1998.Castellanos, D. "The Ubiquitous Pi. Part I."
Math. Mag.
61, 67-98, 1988.Conway, J. H. and Guy,
R. K. The
Book of Numbers. New York: Springer-Verlag, pp. 201 and 250-254, 1996.Euler,
L. "De fractionibus continuis dissertation." Comm. Acad. Sci. Petr.
9,
98-137, (1737) 1744. Reprinted in Leonhardi Euleri Opera Omnia, Ser. I, Vol. 14.
Leipzig, Germany: Teubner, pp. 187-215, 1924.Euler, L. "An
Essay on Continued Fractions." Trans. M. F. Wyman and B. F. Wyman.
Math. Systems Th.
18, 295-328, 1985.Finch, S. R.
"The Natural Logarithm Base." §1.3 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 12-17,
2003.Friedman, E. "Problem of the Month (August 2004)." https://erich-friedman.github.io/mathmagic/0804.html.Gardner,
M. "Memorizing Numbers." Ch. 11 in The
Scientific American Book of Mathematical Puzzles and Diversions. New York:
Simon and Schuster, pp. 103 and 109, 1959.Gardner, M. "The
Transcendental Number e." Ch. 3 in The
Unexpected Hanging and Other Mathematical Diversions. Chicago, IL: Chicago
University Press, pp. 34-42, 1991.Gourdon, X. and Sebah, P. "The
Constant e." .Guillera,
J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical
Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005.
.Hatzipolakis,
A. P. "PiPhilology." ~bottoni/www-cilea/F90/piphil.htm.Hermite,
C. "Sur la fonction exponentielle." C. R. Acad. Sci. Paris
77,
18-24, 74-79, and 226-233, 1873.Knox, J. A. and Brothers, H. J.
"Novel Series-Based Approximations to e." College Math. J.
30,
209-215, 1999.Le Lionnais, F. Les
nombres remarquables. Paris: Hermann, p. 47, 1983.Maor,
E. e:
The Story of a Number. Princeton, NJ: Princeton University Press, 1994.Minkus,
J. "A Continued Fraction." Problem 10327. Amer. Math. Monthly
103,
605-606, 1996.Mitchell, U. G. and Strain, M. "The Number e."
Osiris
1, 476-496, 1936.Nagell, T. "Irrationality
of the numbers e and

."
§13 in Introduction
to Number Theory. New York: Wiley, pp. 38-40, 1951.Newton,
I. The
Mathematical Papers of Isaac Newton, Vol. 2.: 1667-1670 (Ed. D. T. Whiteside).
New York: Cambridge University Press, 1968.Pippenger, N. "An Infinite
Product for

." Amer. Math. Monthly
87,
391, 1980.Plouffe, S. "Table of Current Records for the Computation
of Constants." .Rabinowitz,
S. and Wagon, S. "A Spigot Algorithm for the Digits of

." Amer. Math. Monthly
102, 195-203, 1995.Reid,
C. In From
Zero to Infinity, 4th ed. Washington, DC: Math. Assoc. Amer., 1992.Sandifer,
E. "How Euler Did It: Who proved

is Irrational?" Feb. 2006. %20Euler%20Did%20It%2028%20e%20is%20irrational.pdf.Sloane,
N. J. A. Sequences A000029/M0563,
A001113/M1727, A068985,
A068996, A084148,
A084149, and A100074
in "The On-Line Encyclopedia of Integer Sequences."Sondow,
J. "A Geometric Proof that

Is Irrational and a New Measure of Its Irrationality." Amer. Math. Monthly
113,
637-641, 2006.Stoneham, R. "A General Arithmetic Construction of
Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta
Arith.
16, 239-253, 1970.Wall, H. S. Analytic
Theory of Continued Fractions. New York: Chelsea, 1948.Weisstein,
E. W. "Books about e." .Wells,
D. The
Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England:
Penguin Books, p. 46, 1986.Referenced on Wolfram|Alphae
Cite this as:
Sondow, Jonathan and Weisstein, Eric W. "e." From MathWorld--A Wolfram Resource.
https://mathworld.wolfram.com/e.html
Subject classificationsMore...Less...